Deep
Deterministic

Policy Gradients
(DDPG)

Lain Mustafaoglu

CS395T: Foundations
of Machine Learning
for
Systems Researchers

Overview and Challenges

* Previously: discrete action spaces
* One method we’ve seen so far: deep Q-networks (DQNs)
* Q-table implemented with a neural network (Q-network)

* Select action by finding max Q(s,a)
a

* Today’s lecture: moving to continuous actions
* Two challenges with this:
* Finding max,c4 Q(s, a) to select actions

* Computing max Q(s¢4+1, @) in the update rule
a

2

DDPG: DQN + DPG

+ off policy: replay buffer
. . . + stable update: target network
- low dimensional observation spaces + high dimensional observation spaces

Colley QracieEns. Actor critic — DPG

(RE'NFORCE) + continuous action spaces

- no replay buffer: sample correlation
- no target network: unstable

- high variance + lower variance

Road to DDPG

Advant Act Deep
vantage Actor Deterministic
Critics (A2C/A3C) Policy Gradients
Do) DDPG: DQN + DPG
————— Replay buffer N o) Deterministic policies
“J Deep Q-Networks Determ.lmstlc Policy | \with stochastic
j Target networks |- (DQGN) Gradients (DPG) | oxpioration policies

Deterministic policy: 7: S = A
Actor-Critics

'Y

Problem:
Q-update prone to

(
|
|
|
|
|
|
|
|
|
: di) Q-learning _ .
: ivergence since target \ Policy Gradient
|
|
|
|
|
|
|
|
\

value = update value I Methods

|

|

|

|

: Problem:

} Correlation of Sampling
__________ . samples

Stationary Distribution of Markov Process

(8) 0.0 03 0.7\ A

Transition matrixT=(0.25 04 0.35| B
0.45 0.55 0.0 C

0.25

0.55
0.45

Discrete-time Markov process

* Stationary distribution on states p: what fraction of time is spent on the average in each state?

* Eigenvector computation: Tx = AxforA = 1
* For our problem, x = [0.253, 0.423, 0.324]"

* For MDPs, p is a function of a policy Tt: p”
* Previous lectures: assumed unique starting state s

* This lecture: agent can start in any state with probability p™

6

On-Policy vs. Off-Policy Methods

On-Policy vs. Off-Policy

Are we learning from data collected by the current policy, or data from any policy?

* Off-policy updates learn from any transition

* More sample efficient
* Implemented with experience replay buffer

on-policy

Intevact

do wultiple
updates

8 Replace policy

Replay Buffer (l)

* Addresses sample correlation by using samples from any past policy

* Implementations: First in, first out (FIFO), prioritized, etc.

s,a,r,s(0
s,a,r,s(2)
s,a,r,s(4)

' iNi lay buff
* Samples processed in mini batches IA __ i

I

mini batches

Replay Buffer (llI): Importance Sampling

* How do we optimize a policy using samples collected by another policy?

* One method: importance sampling (recall Monte Carlo lecture)
p*(s) ala]s)
E T a~n(-|s ’ = s~ a~p(-|s
s~p”, a~n(:|)[f(S a)] pP, a~p(:|s) pﬂ(S) ﬁ(a | S) f(a)

Importance
sampling ratios

Target Networks

* Bootstrapping with TD targets from off-policy buffer: target uses own
network’s predictions at next state

* Problem: moving target makes updates unstable!

* Solution: Target networks qu and Hy

* Keep lagging copy of actor and critic networks and update periodically

* Eliminates “high-frequency noise” in updates and promotes stability

Deterministic Policy Gradient Theorem

Policy gradient (stochastic policies):

° : stochastic polic
m:S - P(A) VeJ(1s) = Eanproanm, Vologmo(als)Q (s,a)] P

Deterministic off-policy policy gradient: _ _
e [3: stochastic behavior

policy
m:S > A VOJB(NG) = Es~p5 [V@M@(S) VGQM(S7G’)|CL:M0(S)

Transitions generated by
behavior policy

® 1g: deterministic target
policy

e p™ and p#: state visitation
distributions under mr and 8

Deep Deterministic Policy Gradient (DDPG)

Unifies DQN-style off-policy learning and deterministic policy gradients (Silver et al. 2014)
for continuous control

* Key idea: learn deterministic policy while choosing actions with stochastic behavior policy
* Exploration policy with noise: a; = piperg(S¢) + N

1. replay buffer
2. deep neural network
3. target network

Q learning —— DOQN

— DDPG

Policy gradient

(REINFORCE) Actor critic — DPG

Continuous
action spaces

DDPG

select action
V/(6) a, = pg(s,) + N
: bic Mo (Se) d St
Hg' (-q.' } ‘.)

Sample l batch l'\l" u-" I:' '\."—]) Store ‘ data (St, a‘, Tt. st+1)
Replay «
15

Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|6%) and actor u(s|6*) with weights 62 and 9+.
Initialize target network @’ and x’ with weights 09" «+ 09, 9+ « g~
Initialize replay buffer R
for episode = 1, M do
Initialize a random process N for action exploration
Receive initial observation state s;
fort=1,Tdo
Add noise for exploration Select action a; = u(s¢|0*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state S;11
Replay buffer Store transition (s¢, a, ¢, S¢+1) in R
Sample a random minibatch of NV transitions (s;, a;, 74, S;+1) from R
Set yi = i + YQ' (841, 1/ (5:41]07)|69)
Update critic by minimizing the loss: L = & > (y; — Q(s;,a;]09))?
Update the actor policy using the sampled policy gradient:

Critic update

1
Actor update Voud ~ N Z VaQ(s, a|9Q)|s=si,a=u(si)V6#M(5|9”)|si

Update the target networks:
Target network update 09 « 709 + (1 —7)6%
0" «— 16" + (1 —T1)0*

end for
end for

Experiments

MuJoCo and Torcs for continuous control experiments

Results

Normalized Reward

Cart Pendulum Swing-up Cartpole Swing-up Fixed Reacher Monoped Balancing
1. 1
1W%) !
0
0
0
0 0
Gripper Blockworld Puck Shooting Cheetah " Moving Gripper
1 1
1 1
0
ol 0
0
0 1 0 1 0 1 0 1 0 1
Million Steps
Light Grey: Original DPG « Sample efficiency of a factor of 20 vs. DQN!

Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs

20

Key Takeaways

Method Policy Exploration Off-policy

DQN Greedy Epsilon-greedy Yes (replay buffer, FIFO)

DPG Deterministic Stochas’ug behavior No

policy
DDPG Deterministic Stocha;gﬁck;ehawor Yes (replay buffer, FIFO)
Epsilon-greedy with
A2C/A3C Stochastic multiple learners + No
entropy

21

Any questions?

