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Overview and Challenges

• Previously: discrete action spaces

• One method we’ve seen so far: deep Q-networks (DQNs)

• Q-table implemented with a neural network (Q-network)

• Select action by finding max
!∈#	

𝑄(𝑠, 𝑎)	

• Today’s lecture: moving to continuous actions 

• Two challenges with this:

• Finding max!∈#	 𝑄(𝑠, 𝑎) to select actions

• Computing max
!∈#	

𝑄(𝑠%&', 𝑎) in the update rule
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DDPG: DQN + DPG
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Road to DDPG

DDPG: DQN + DPG

Deterministic policy: 𝜋: 𝑆 → 𝐴
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Stationary Distribution of Markov Process

• Stationary distribution on states 𝜌: what fraction of time is spent on the average in each state?
• Eigenvector computation: Tx = 𝜆x for 𝜆 = 1
• For our problem, x = [0.253, 0.423, 0.324]T

• For MDPs, 𝜌 is a function of a policy 𝜋: 𝜌(
• Previous lectures: assumed unique starting state 𝑠)
• This lecture: agent can start in any state with probability 𝜌(

Discrete-time Markov process
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On-Policy vs. Off-Policy Methods
On-Policy vs. Off-Policy
Are we learning from data collected by the current policy, or data from any policy?

• Off-policy updates learn from any transition
• More sample efficient
• Implemented with experience replay buffer
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Replay Buffer (I)

• Addresses sample correlation by using samples from any past policy

• Implementations: First in, first out (FIFO), prioritized, etc.

• Samples processed in mini batches
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Replay Buffer (II): Importance Sampling

• How do we optimize a policy using samples collected by another policy?

• One method: importance sampling  (recall Monte Carlo lecture)
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Target Networks 

• Bootstrapping with TD targets from off-policy buffer: target uses own 
network’s predictions at next state

• Problem: moving target makes updates unstable! 

• Solution: Target networks 𝑄!& and 𝜇
"&

• Keep lagging copy of actor and critic networks and update periodically

• Eliminates “high-frequency noise” in updates and promotes stability
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Policy gradient (stochastic policies): 

 Deterministic off-policy policy gradient:

Deterministic Policy Gradient Theorem

Transitions generated by 
behavior policy 𝛽

• 𝛽:	stochastic behavior 
policy

• 𝜇!:	deterministic target 
policy

• 𝜌" 	and 𝜌#: state visitation 
distributions under 𝜋	and 𝛽
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• 𝜋!: stochastic policy

𝜋: 𝑆 → 𝐴

𝜋: 𝑆 → 𝑃(𝐴) 



Deep Deterministic Policy Gradient (DDPG)

Unifies DQN-style off-policy learning and deterministic policy gradients (Silver et al. 2014) 
for continuous control
• Key idea: learn deterministic policy while choosing actions with stochastic behavior policy
• Exploration policy with noise: 𝑎! = 𝜇!"#!$(𝑠!) +𝒩
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DDPG 
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Algorithm

Replay buffer

Add noise for exploration 

Critic update

Actor update

Target network update
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Experiments

MuJoCo and Torcs for continuous control experiments 
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Results

Light Grey: Original DPG 
Dark Grey: Target Network 
Green: Target Network + Batch Norm 
Blue: Target Network from pixel-only inputs
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• Sample efficiency of a factor of 20 vs. DQN! 



Key Takeaways

Method Policy Exploration Off-policy

DQN Greedy Epsilon-greedy Yes (replay buffer, FIFO)

DPG Deterministic Stochastic behavior 
policy No

DDPG Deterministic Stochastic behavior 
policy Yes (replay buffer, FIFO)

A2C/A3C Stochastic
Epsilon-greedy with 
multiple learners + 

entropy
No
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Any questions?
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