
Deep
Deterministic
Policy Gradients
(DDPG)

Lain Mustafaoglu

CS395T: Foundations
of Machine Learning

for
Systems Researchers

1

Overview and Challenges

• Previously: discrete action spaces

• One method we’ve seen so far: deep Q-networks (DQNs)

• Q-table implemented with a neural network (Q-network)

• Select action by finding max
!∈#	

𝑄(𝑠, 𝑎)	

• Today’s lecture: moving to continuous actions

• Two challenges with this:

• Finding max!∈#	 𝑄(𝑠, 𝑎) to select actions

• Computing max
!∈#	

𝑄(𝑠%&', 𝑎) in the update rule

2

DDPG: DQN + DPG

4

Road to DDPG

DDPG: DQN + DPG

Deterministic policy: 𝜋: 𝑆 → 𝐴

5

Stationary Distribution of Markov Process

• Stationary distribution on states 𝜌: what fraction of time is spent on the average in each state?
• Eigenvector computation: Tx = 𝜆x for 𝜆 = 1
• For our problem, x = [0.253, 0.423, 0.324]T

• For MDPs, 𝜌 is a function of a policy 𝜋: 𝜌(
• Previous lectures: assumed unique starting state 𝑠)
• This lecture: agent can start in any state with probability 𝜌(

Discrete-time Markov process

6

On-Policy vs. Off-Policy Methods
On-Policy vs. Off-Policy
Are we learning from data collected by the current policy, or data from any policy?

• Off-policy updates learn from any transition
• More sample efficient
• Implemented with experience replay buffer

8

Replay Buffer (I)

• Addresses sample correlation by using samples from any past policy

• Implementations: First in, first out (FIFO), prioritized, etc.

• Samples processed in mini batches

9

Replay Buffer (II): Importance Sampling

• How do we optimize a policy using samples collected by another policy?

• One method: importance sampling (recall Monte Carlo lecture)

10

Importance
sampling ratios

Target Networks

• Bootstrapping with TD targets from off-policy buffer: target uses own
network’s predictions at next state

• Problem: moving target makes updates unstable!

• Solution: Target networks 𝑄!& and 𝜇
"&

• Keep lagging copy of actor and critic networks and update periodically

• Eliminates “high-frequency noise” in updates and promotes stability

11

Policy gradient (stochastic policies):

 Deterministic off-policy policy gradient:

Deterministic Policy Gradient Theorem

Transitions generated by
behavior policy 𝛽

• 𝛽:	stochastic behavior
policy

• 𝜇!:	deterministic target
policy

• 𝜌" 	and 𝜌#: state visitation
distributions under 𝜋	and 𝛽

13

• 𝜋!: stochastic policy

𝜋: 𝑆 → 𝐴

𝜋: 𝑆 → 𝑃(𝐴)

Deep Deterministic Policy Gradient (DDPG)

Unifies DQN-style off-policy learning and deterministic policy gradients (Silver et al. 2014)
for continuous control
• Key idea: learn deterministic policy while choosing actions with stochastic behavior policy
• Exploration policy with noise: 𝑎! = 𝜇!"#!$(𝑠!) +𝒩

14

DDPG

15

Algorithm

Replay buffer

Add noise for exploration

Critic update

Actor update

Target network update

18

Experiments

MuJoCo and Torcs for continuous control experiments

19

Results

Light Grey: Original DPG
Dark Grey: Target Network
Green: Target Network + Batch Norm
Blue: Target Network from pixel-only inputs

20

• Sample efficiency of a factor of 20 vs. DQN!

Key Takeaways

Method Policy Exploration Off-policy

DQN Greedy Epsilon-greedy Yes (replay buffer, FIFO)

DPG Deterministic Stochastic behavior
policy No

DDPG Deterministic Stochastic behavior
policy Yes (replay buffer, FIFO)

A2C/A3C Stochastic
Epsilon-greedy with
multiple learners +

entropy
No

21

Any questions?

22

